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Abstract 

Introduction: 

Periprosthetic joint infection (PJI) is a significant complication of primary total knee 

arthroplasty (TKA). A prediction tool to assist clinical preoperative risk assessment is 

important. However, no such model is tailored for Hong Kong patients. This study aimed to 

develop a machine learning (ML)-based model for predicting PJI following primary TKA in 

Hong Kong. 

 

Materials and Methods: 

A retrospective analysis was conducted in a local teaching hospital on 3,483 primary TKA (81 

with PJI) from 1998 to 2021. We gathered 61 features, encompassing patient demographics, 

operation-related variables, laboratory findings and comorbidities. Six of them were selected 

by univariate and multivariate analysis. We trained a Balanced Random Forest classifier using 

stratified 10-fold cross-validation and compared it with Logistic Regression to verify ML 

performance. 

 

Results: 

The ML model demonstrated stable and robust performance across all ten folds, with average 

metrics of 0.963 for area under the receiver operating curve, 0.920 for balanced accuracy, 0.938 

for sensitivity, and 0.902 for specificity, outperforming the Logistic Regression model (AUC, 

0.728). The significant risk factors identified were long operative time (HR, 9.07; p=0.018), 

male (HR, 3.11; p<0.001), ASA>2 (HR, 1.68; p=0.028), history of anaemia (HR, 2.17; p=0.023) 

and history of septic arthritis (HR, 4.35; p=0.030). Spinal anaesthesia (HR, 0.55; p=0.022) was 

a significant protective factor.  

 

Discussion and conclusion: 

We developed the first ML-based model for predicting PJI following primary TKA in Hong 

Kong, demonstrating its superiority over statistical methods. It may assist the preoperative 

treatment decision-making and patient health optimization.  

 

 

1. Introduction: 

A common surgical treatment option for severe knee osteoarthritis is the primary total knee 

arthroplasty (TKA). The demand for TKA is high and was estimated to have an increase of 

673% to 3.48 million by 2030 in the United States (1). In view of the aging population, there 

is a surging demand of TKA in Hong Kong. Periprosthetic joint infection (PJI), a significant 

complication of TKA, is expected to increase in number of cases, hence requires more attention. 

PJI is the leading cause of revision knee replacement which occurs in 1%-2% of primary joint 

replacements (2, 3). It is expected to devastate patient outcomes and increase hospital resource 

utilisation by causing greater pain and mortality, longer antibiotic treatment and length of stay 

in hospital, more revision surgeries, and a higher economic cost which was estimated to cost 

USD$1.1 billion by 2030 (4, 5). Hence, there is a pressing need for preoperative PJI risk 

stratification. 

 



Machine learning (ML) is a subset of artificial intelligence which learns the pattern from 

experience and improves along the learning progress (6). ML is rapidly gaining prominence in 

Orthopaedics due to its promising potential in discerning underlying patterns within data in 

complex and non-linear tasks, and overcoming difficulties in imbalanced classification tasks. 

ML has shown to have a great ability in the prediction of the failure rate of debridement, 

antibiotics and implant retention for PJI and the prediction of recurrent PJI following revision 

TKA (7, 8), demonstrating its potential in prediction and classification tasks. 

 

While recent attempts have been made to stratify PJI risk following primary TKA by statistical 

or ML-based methods (9-15), to our best knowledge, there is a knowledge gap: No such model 

has been designed specifically for Hong Kong patients. Regarding the variation in lifestyles 

and risk factors among different countries, prior studies may be unsuitable for the local 

population. Moreover, previous models often included only a limited set of risk factors, failing 

to comprehensively investigate potential predictors such as operative duration, less common 

comorbidities and preoperative laboratory test results. Furthermore, some prior risk models 

require many selected predictors to form a prediction, increasing data collection, input and 

computational time in clinical settings, thereby hindering clinical utility. 

 

In light of these limitations, this study aimed to develop a comprehensive ML model for 

predicting PJI risk following primary TKA in Hong Kong and to identify predictors. We 

examined a broad range of potential risk factors and minimised the number of predictors 

required, thereby providing accurate predictions with fewer inputs. This study also aimed to 

solve the imbalanced classification task of PJI.  

 

2. Methods 

2.1 Patient Cohort 

This single-centred retrospective study of a local teaching hospital was approved by the 

Institutional-Review-Board (UW23-328). Between 1998 and 2021, the ipsilateral, staged or 

simultaneous bilateral primary TKA with electronic patient record of the operation and a 

minimum follow-up time of one year was included. Episodes of unicompartmental or 

bicompartmental knee arthroplasty and TKA with a prior revision were excluded. TKA was 

searched by the ICD-9-CM procedure code 81.54 (total knee replacement) in the Clinical Data 

Analysis and Reporting System of our hospital. Patient chart review was performed using the 

electronic patient record system of our hospital to exclude ineligible TKAs according to our 

exclusion criteria.  

 

The final cohort included 3483 TKAs, divided into infected class (PJI developed following 

TKA) and non-infected class (No evidence of PJI following TKA). PJI was defined according 

to the endorsed Musculoskeletal Infection Society criteria at the 2013 international consensus 

meeting (16). 

 

2.2 Feature Collection and Preprocessing  

From the electronic patient record system and Clinical Data Analysis and Reporting System, 

we collected 61 features, including patient demographics (eg. age, gender, ethnicity and 

American Society of Anesthesiology (ASA) score), operation-related variables (eg. operative 

time, anaesthesia type and indication for operation.), laboratory findings (eg. preoperative 

albumin, haemoglobin and international normalized ratio) and comorbidities (eg. diabetes 

mellitus, tuberculosis, systemic lupus erythematosus and septic arthritis). The characteristics 

of the cohort were summarized in Table 1. 

 



Missing data was imputed with the mean for continuous variables and the mode for discrete 

variables. The effect of outliers was reduced by Winsorization. MaxAbsScaler was applied to 

continuous variables for re-scaling.  

 

By univariate analysis, the p-value was calculated for all features and summarized in Table 1. 

16 features (p<0.05) were selected for an iterative multivariate analysis. 6 significant features 

(p<0.05) were selected as our final set of predictors, including operative time, male, ASA>2, 

spinal anaesthesia, history of anaemia and history of septic arthritis. 

 

2.3 Model Development  

In this research, we employed the Balanced Random Forest Classifier to predict the risk of PJI 

following primary TKA. Random Forest classifier is a popular and easy-to-use ML algorithm 

which involved a technique called bagging (bootstrap aggregation) (17). Bootstrap involved a 

random sampling of the dataset with replacement. Our dataset was a highly imbalanced dataset 

with a small sample size of the minority class (with PJI). Dealing with a significantly 

imbalanced dataset, the bootstrap samples may consist of very few or even none of the minority 

class, leading to a poor predictive capability of the model on the minority class. However, by 

using the Balanced Random Forest classifier, the imbalance problem could be solved. In each 

iteration of the classifier, a bootstrap sample was drawn from the minority class. Then, the 

same number of majority class was randomly sampled with replacement. By down-sampling 

the majority class, a balanced boostrap sample could be resulted to induce a classification tree. 

The predictions of the ensemble, which consisted of all classification trees, were aggregated 

and reached the final prediction by majority voting (18). 

 

We also developed a Logistic Regression (LR) model, a common statistical method, for 

comparison to verify our ML model’s performance. Both models were trained using a stratified 

10-fold cross-validation method with hyperparameters tuned. The stratified 10-fold cross 

validation method involved a random splitting of the complete dataset into 10 folds with the 

same stratified class ratio between the majority and minority classes as the ratio of the complete 

dataset (19). Within one iteration, all folds were used for model training except for one fold 

which was used for model validation and assessing the performance of the model. The cross-

validation process was repeated for 10 iterations. The final performance of the model was the 

average of the performance in each iteration. 

 

Both models performance were evaluated by several metrics, including the area under the 

receiver operating curve (AUC), balanced accuracy, sensitivity, specificity, precision, F1 score 

and Brier score. AUC is the most common metric for evaluating the performance of the model. 

It is the area under a probability curve plotted with true positive rates against false positive 

rates, representing the degree of predictive performance. The value of AUC ranges from 0 to 1. 

A model with an AUC higher than 0.7 is considered to have a good performance with clinical 

significance, while an AUC of 1 is considered as perfect (20). The rest of the metrics range 

from 0 to 1, with a higher score indicating a better performance except for Brier score which 

reflects a better performance when approaching 0.  

 

In order to increase the transparency and interpretability of the prediction model, a global 

explanation was provided. Global explanation was delivered through the feature importance 

which were visualized by a SHapley Additive exPlanations (SHAP) summary plot of each 

feature. The summary plot described how the features contributed to the model prediction 

output and their importance, enabling an interpretable risk stratification model. 

 



All statistical analysis, ML model development and evaluation were performed with the use of 

Python (Python Software Foundation, Wilmington, DE, USA) and Anaconda (Anaconda Inc., 

Austin, TX, USA). 

 

3. Results  

81 (2.3%) TKAs developed PJI. Most of the patients were Chinese (98.2%) female (73%), with 

a mean age of 70.4 years, had an ASA class 2 (57.5%) and mean BMI of 27.8 kg/m2. Most of 

the TKAs lasted for 116.6 minutes, using spinal anaesthesia (48.9%), and with primary 

osteoarthritis as the indication of operation (92.6%). The mean preoperative laboratory findings 

were 42.3 g/L for albumin, 12.8g/dL for haemoglobin, 1.0 for international normalized ratio 

and 1.8x10^9/L for absolute lymphocyte count. Common comorbidities were hypertension 

(71.3%), diabetes mellitus (41.3%) and hyperlipidaemia (11.3%) (Table 1). 

 

The ML model outperformed the LR model, demonstrating stable and robust performances 

across all ten folds (Fig.1), with excellent average AUC (ML: 0.963 Vs LR: 0.728), balanced 

accuracy (ML: 0.920 Vs LR: 0.654), sensitivity (ML: 0.938 Vs LR: 0.744), and specificity 

(ML: 0.902 Vs LR: 0.564) (Table 2). 

 

Predictors identified in order of significance were operative time (HR, 9.07; 95% CI, 1.47-

56.14; p=0.018), male gender (HR, 3.11; 95% CI, 1.97-4.90; p<0.001), ASA>2 (HR, 1.68; 95% 

CI, 1.06-2.67; p=0.028), spinal anaesthesia (HR, 0.55; 95% CI, 0.33-0.92; p=0.022), history of 

anaemia (HR, 2.17; 95% CI, 1.11-4.24; p=0.023) and history of septic arthritis (HR, 4.35; 95% 

CI, 1.15-16.41; p=0.030). Spinal anaesthesia was a protective factor among all risk factors. 

Their effect on the model output was visualized in the SHAP summary plot (Fig. 2). 

 

4. Discussion and conclusion: 

This study developed the first PJI prediction model for the local population. A recent study 

developed a ML-based artificial neural network for PJI risk prediction (AUC, 0.84) (15). In 

this study, our ML model (AUC, 0.963) outperformed prior models, demonstrating its excellent 

discriminative capability and potential for identifying high-risk patients in the clinical 

environment.  

 

The predictors identified were supported by existing literatures. The strongest predictor 

identified was operative time. A longer operative time was found to be associated with higher 

PJI risk. With a 15-minute increase in operative time, a 18% (95% CI, 11-26) increased PJI 

risk was found by a retrospective study of 11,840 primary TKAs performed between 2014 and 

2017 (21), and a 9% (95% CI, 4-13) increased deep wound infection risk was found by a 

registry-based study of 56,216 primary TKAs performed between 2001 and 2009 (22). The 

underlying mechanism may be multifactorial. In TKAs, large incisions are inevitable. With a 

longer operative time, there is a higher risk for contamination of the open wound by airborne 

bacteria (23, 24), and an increased risk of tissue desiccation around the incisions (25), which 

is prone to contamination and delay the wound healing process (26). Also, a longer tourniquet 

duration may prolong wound hypoxia and increase infection risk. (27) 

 

The second significant predictor was male gender. Male was revealed to be a significant PJI 

risk factor in an analysis of 64,566 TKAs from the New Zealand Joint Registry performed 

between 1999 and 2012 (OR 1.84, 95% CI 1.24-2.73) (28) and an analysis of 56,216 TKAs 

from an American registry performed from 2001 to 2009 (HR, 1.89) (29). The underlying 

mechanism is controversial. Male gender may not necessarily be the risk factor, it may be 

related to multiple behavioural factors that were not recorded in our electronic patient record 



system and thus not investigated in this study, including smoking, alcohol, diet and hygiene 

which are more prevalent in males than females (30, 31).  

 

The third significant predictor was ASA>2. ASA score is a score assessed by an anaesthetist 

preoperatively which indicates the physical status of the patient, estimating the comorbidity 

and preoperative risk. ASA > 2 indicates the presence of significant systemic disease (32). We 

found that ASA score > 2 was associated with an increased risk of PJI following TKA. This 

observation was consistent with the findings of other studies. In the meta-analysis by Kong et 

al (32), it was concluded that ASA score > 2 was a high risk factor (OR, 2·06; 95% CI, 1.77–

2.39) among all risk factors investigated. The multivariable analysis by Panula et al (33) also 

found that ASA 2 had a 1.2 lower hazard ratio than ASA > 2 compared with ASA 1 for PJI 

following total hip arthroplasty.  

 

Spinal anaesthesia was the only protective factor identified among all risk factors. Scholten et 

al (34) suggested less association between spinal anesthesia and early PJI after TKA compared 

to general anesthesia. The analysis showed an odds ratio for PJI of 2.0 (95% CI, 1.0–3.7) after 

general anesthesia relative to spinal anesthesia. Similar result was obtained by several 

literatures (35-37). Although the underlying mechanism is not fully understood, the association 

between spinal anaesthesia and less blood loss, less blood transfusions required and less 

incidence of hyperglycaemia are some possible reasons for its protective nature from PJI since 

these factors suppress immunity (34, 38, 39). 

 

Our study has several strengths. We demonstrated that ML outperformed statistical methods 

(LR) in this imbalanced classification task, as ML automates pattern learning without the need 

for manual specification of the relationship between data. Furthermore, the model’s reliance 

on only six selected predictors enhances its ease of use. Moreover, the extensive investigation 

of potential predictors makes our study particularly comprehensive. 

 

Our study has strong clinical implications. Five predictors of our model were modifiable. By 

applying our model in real clinical settings, we could identify high-risk patients and their 

modifiable risk factors preoperatively. Adequate health optimization and surgical plans could 

be performed accordingly, thereby reducing PJI risk preoperatively. Patient could also make a 

thorough preoperative treatment decision by weighing TKA risks against benefits. Healthcare 

sectors could allocate clinical resources better and reduce expenditure as well. 

 

However, there are limitations. The ‘black box’ nature of ML causes an opaque decision 

making process which the users could not fully understand (40). To increase the interpretability 

and transparency of the model, we provided a global interpretation of the model prediction that 

visualized the significant features and their contribution to the model prediction output. 

Moreover, as a single-centered retrospective study with a small cohort size, pre-existing 

misclassification, selection and recall bias may be inherent, possibly leading to prevalent risk 

factors for PJI, such as diabetes, hypertension, and body mass index (BMI) (41, 42), being 

classified as insignificant predictors which their p-values in our univariate analysis were 0.742 

for diabetes mellitus, 0.157 for hypertension, and 0.148 for BMI, higher than our significant 

level 0.05. Future multi-centred prospective studies with a larger cohort are warranted to 

validate the model predictive ability in clinical settings. Furthermore, our study only 

incorporated internal validation. The model's generalizability may require future external 

validation for confirmation. 

 



We developed the first ML model for predicting PJI following primary TKA in Hong Kong, 

identifying operative time and gender as the strongest predictors. We also demonstrated its 

superiority over statistical methods and provided a global interpretation for the model to 

increase transparency in the ML prediction process. This model may assist the preoperative 

treatment decision-making and patient health optimization.  

 

Figure 1. The confusion matrices and receiver operating characteristics curve of all ten folds. 

 
 

Figure 2. The SHAP summary plot 

 
 

 

  



Table 1. Characteristics of the cohort 

Characteristics Primary total knee arthroplasty patients (N=3483) P-value from 

univariate analysis 

Patient demographics  

Age (years) 70.4 10.0 <0.001 

Male gender 939 (27.0%) <0.001 

Ethnicity Chinese 3421 (98.2%); Other Asians 33 (0.9%); British 

22 (0.6%); Non-Asians 7 (0.2%) 

0.436 

American Society of Anaesthesiology 

score 

ASA 1, 146 (4.2%); ASA 2, 2002 (57.5%); ASA 3, 

1077 (30.9%); ASA 4, 3 (0.1%); Missing, 255 (7.3%) 

ASA>2: 0.016 

Body mass index (kg/m2) 27.8  4.6 0.148 

Operation-related variables  

Laterality Left 1458 (41.9%); Right 1457 (41.8%); Bilateral 568 

(16.3%) 

0.229 

Operative time (minutes) 116.6  75.8 <0.001 

Month of operation (months) 6.7  3.5 0.667 

Preoperative length of stay (days) 1.2  1.8 0.081 

Anaesthesia type   

     General anaesthesia 1233 (35.4%) 0.002 

     Spinal anaesthesia 1703 (48.9%) 0.003 

     Combined-spinal epidural anaesthesia 428 (12.3%) 0.987 

     Epidural anaesthesia 22 (0.6%) 0.497 

     Other 97 (2.8%) 0.861 

Indication for operation    

     Primary osteoarthritis 3226 (92.6%) <0.001 

     Rheumatoid arthritis 114 (3.3%) 0.826 

     Neoplasm 56 (1.6%) <0.001 

     Secondary osteoarthritis 89 (2.6%) 0.008 

     Other 32 (0.9%) 0.157 

Laboratory findings  

Preoperative albumin (g/L) 42.3  3.3 0.014 

Preoperative haemoglobin (g/dL) 12.8  1.4 0.058 

Preoperative international normalized 

ratio 
1.0  0.1 0.028 

Preoperative absolute lymphocyte count 

(x10^9/L) 
1.8  0.6 0.102 

Comorbidities  

Diabetes mellitus 1438 (41.3%) 0.742 

     Uncomplicated 1339 (38.4%) 0.469 

     Complicated 99 (2.8%) 0.258 

Hypertension 2482 (71.3%) 0.157 

Renal disease 109 (3.1%) 0.995 

     Renal failure 60 (1.7%) 0.999 

     Renal impairment 49 (1.4%) 1.000 

Heart failure 107 (3.1%) 0.751 

Chronic ischaemic heart disease  251 (7.2%) 0.716 

Atrial fibrillation 137 (3.9%) 0.914 

Dysrhythmia 53 (1.5%) 0.831 

Myocardial infarction 17 (0.5%) 1.000 

Angina pectoris 36 (1.0%) 0.857 

Atherosclerosis 38 (1.1%) 0.241 

Peripheral vascular disease 6 (0.2%) 0.052 

Asthma 90 (2.6%) 0.450 

Chronic obstructive pulmonary disease 38 (1.1%) 0.900 

Cerebrovascular disease 85 (2.4%) 0.460 

Neoplasm 339 (9.7%) 0.056 

     Non-malignant neoplasm 206 (5.9%) 0.565 

     Malignant neoplasm 133 (3.8%) 0.027 

Organic brain syndrome 14 (0.4%) 0.258 

Epilepsy 13 (0.4%) 0.976 

Hemiplegia 10 (0.3%) 0.996 

Alzheimer’s disease 12 (0.3%) 0.999 



*Bolded p-values are p-values > 0.05. 

 

Table 2. Average performances across all 10 folds  
Metrics Balanced Random Forest Logistic Regression 

Area under Receiver Operating Curve 0.963 0.728 

Balanced Accuracy 0.920 0.654 

Sensitivity 0.938 0.744 

Specificity 0.902 0.564 

Precision 0.189 0.039 

F1 score 0.314 0.074 

Brier-score 0.097 0.432 
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